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Chapter 5

NEWTON'S LAWS

A.)   Newton's Three Laws:

1.)  Newton's First Law:  In an inertial frame of reference, bodies in
motion tend to stay in motion in a straight line, and bodies at rest tend to stay
at rest, unless impinged upon by a net external force.

a.)  Example:  When an object in space is given a quick push and then
left alone, it will move with a constant velocity in the direction of the
push until an outside (external) force accelerates it into another kind of
motion (i.e., makes it go faster, slower, change directions, or some com-
bination thereof).

Until a net external force is applied, the constant-velocity, straight-
line motion of a body will continue unchanged.

2.)  Newton's Second Law:  The acceleration a of a body (as a vector) is
proportional to the net force F (also a vector) acting on the body.

a.)  Mathematically, this can be stated as

    F = ma,

where the proportionality constant m is the mass of the object being
accelerated (see section on "What is MASS" at the end of this chapter).

b.)  As a force in the x direction will not make a body accelerate in the
y direction, we can break both the net force and acceleration into their
component parts and write three direction-related force equations:

Fnet,x = m (ax),
Fnet,y = m (ay),
Fnet,z = m (az).

Note 1:  These look like scalar equations because we haven't included
unit vectors to designate direction, but each nevertheless represents a vector
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quantity.  As such, we need to be careful of direction as denoted by positive and
negative signs.

Note 2:  Newton's Second Law is the work-horse of the three laws.  It is a
very powerful tool for analyzing situations in which forces and accelerations are
involved.  There is a technique involved in its use, outlined in Part B.  LEARN
THE APPROACH.  Understand it.  You should become so familiar with it that
you can use it to evaluate problems you have never seen before using nothing more
than it and your head.

3.)  Newton's Third Law:  For every force in the universe, there exists
somewhere an equal and opposite reaction force.

Note:  This idea of an action/reaction pair is somewhat misleading as it
suggests that one force follows the other.  As the examples will show, that is not
the case.  We will use the terminology because it is standard, not because it is
an intelligent way of characterizing the interaction.

a.)  Example 1:  Imagine hitting a door with your hand.  Doing so
applies a force to the door which, if great enough, will break the door.  In
turn, the door applies a force to you which, if great enough, will break
your hand.  The size and direction of the force you apply must, according
to N.T.L., be equal and opposite the force it applies to you.

i.)  In the case of the door, the action is characterized by the
statement, "You apply a force to the door" while the reaction is
characterized by the statement, "The door applies a force to you."
Notice that the wording is almost identical with the exception of re-
versed noun and/or pronoun order.  This is always the case with the
characterization of action/reaction pairs.

ii.)  Don't be misled by the apparent personification of "the door."
It obviously hasn't made a conscious decision to hit you back, even
though the characterization implies that such be the case.  Newton's
Third Law is a commentary on the structural reality of the universe.
The only way forces can be generated are in action/reaction pairs.  By
implication, if you try to apply 180 pounds of force to a table that can
only provide 150 pounds of reaction force back on you, you will never
succeed.  The table will give way as soon as you exceed the 150
pounds that it can apply to you.

b.)  Example 2:  If the earth applies a gravitational force on you, what
is the reaction force that must, according to N.T.L., exist?
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i.)  Answer:  The reaction force is the gravitational force that you
exert on the earth.  Again, the same rearranged language is used to
state the reaction force as was used to state the action force.

  c.)  Example 3:  A truck runs head-on into a train.  The train is ten
times more massive than the truck.  How do the forces experienced by
each compare?

i.)  The answer is, THEY ARE THE SAME!  The train applies a
force to the truck and, as a consequence, experiences an acceleration.
The truck applies a force to the train and, as a consequence,
experiences an acceleration.  The two accelerations are different but,
according to N.T.L., the two forces must be equal.  Figures 5.1a and
5.1b depict this situation along with the fact that as ma equals the
force on each body, that product must be the same for each body.

B.)  Newton's Second Law and Types of Forces:

1.)   Newton's Second Law is intimately related to force acting on a body.
A brief preliminary discussion of the five kinds of forces you will work with
follows in Parts 2 through 6:

2.)  Gravitational force:

a.)  Gravity is a force of attraction between any two massive objects.

b.)  When the earth is one of the two bodies involved:
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i.)  The gravitational force felt by the second object (you, for in-
stance) while positioned on the earth's surface will always be di-
rected toward the earth's center; and

ii.)  The gravitational force on the body will have a magnitude
equal to the product mg, where m is the mass of the object in
question and g is the gravitational acceleration near the earth (9.8
m/s2 in the MKS system of units; 980 cm/s2 in the CGS system of
units; 32.2 ft/s2 in the English (i.e., our) system of units).

Note:  There are two metric systems of units (the MKS and the CGS
systems) and one non-metric system (our own--the "English" system):

The MKS system uses meters for length, kilograms for mass, and seconds
for time (hence, MKS).  Force is in newtons and energy is in joules.

The CGS system uses centimeters for length, grams for mass, and seconds
for time (hence, CGS).  Force is in dynes and energy is in ergs.

The English system will never be used in this book (a base-10 version is
used in engineering applications, but physicists generally stay away from it).
For completeness, though, it uses feet for length, slugs for mass, and seconds for
time.  Force is in pounds and energy is in foot-pounds.

NEVER MIX UNIT-SYSTEMS.  If you find yourself with mass infor-
mation in grams (the CGS system) and you want to know the body's weight, do
not multiply the mass by 9.8 m/s2--the MKS value for the acceleration of
gravity.  Either convert the mass to kilograms (divide by 1000) or use the CGS
value for g (i.e., 980 cm/s2).

iii.)  The gravitational force will be equal to the body's weight
(that's right, folks, when you step on a scale and it measures your
weight, you are really measuring mg--the force of attraction
between you and the earth).  As weight is a force, its units in the
MKS system are kilogram.meter/second2, or newtons.

c.)  Example:  Assuming we neglect air friction, a freely falling
object has only one force acting on it--gravity (see Figure 5.1c).

3.)  Normal force:

a.)  A normal force is a force of support provided to a body by a
surface in which the body is in contact;

b.)  Normally characterized by N, a normal force is always directed
perpendicular to and away from the surface providing the support;
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c.)  Example 1:  In Figure
5.2a, a book is supported by a
table. Figure 5.2b depicts all
the forces acting on the book
(this is called a free body
diagram, or f.b.d.).  Notice that
the normal force acting on the
book is perpendicular to and
away from the table's top (the
gravitational force is also
shown).

d.)  Example 2:  In
Figure 5.3a, a book rests on
an incline plane.  Figure
5.3b shows the f.b.d. for the
forces acting on the book.
As was the case in
Example 1, the normal
force acting on the book is
perpendicular to and
directed away from the in-
cline's top, even though the
top is not in the horizontal!

Note:  The normal force acts on the under-
side of the book, as shown in Figure 5.4.  Though
technically dubious, normal forces are usually
presented as in Figure 5.3b.  This is done for con-
venience (you will see why shortly).  Either posi-
tioning is acceptable.

4.)  Tension force:

a.)  Tension force is applied to a body by a rope, string, or cable.

b.)   Normally characterized by T,  tension forces are always applied
along the line of the cable and away from the body in question.
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c.)  Example:  A string is attached
to a hanging mass, threaded over a
pulley, and attached to a second mass
sitting on a table (see Figure 5.5a).  The
forces on the hanging mass are shown in
Figure 5.5b; the forces on the tabled
mass are shown in Figure 5.5c.  In both
cases, the tension force is directed away
from the body and along the line of the
string.

Note:  If the pulley
is one of those mythical
"frictionless, massless"
jobs assumed-into-exis-
tence by physics de-
partments across the
country, the massless
nature of the pulley will
allow the magnitude of the
tension force on either side
of the pulley to be the
same.  In other words, an
ideal pulley changes the
DIRECTION of the tension force (in this case, from the horizontal to the
vertical) but does not change the force's magnitude.

5.)  Frictional force:

a.)  Friction is produced by the atomic interaction between two bod-
ies as they either slide over one another (this is called kinetic friction) or
sit motionless in contact with one another (this is called static friction).

Note:  When two bodies come very close (i.e., rest against one another),
there is a weak atomic bonding that occurs between the electrons of the one
structure and the protons of the other (and vice versa).  It is almost as though
the atoms of the two bodies have melded to some degree.  When the bodies try
to move over one another, this bonding has to be sheared.  That shearing is
what produces the retarding effects we call friction.
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b.)  Kinetic friction:   Sometimes called sliding friction, kinetic fric-
tion occurs when one body slides over or against a second body.  The di-
rection of kinetic friction is always opposite the direction of motion.

From experimentation, it has been observed that the amount of ki-
netic friction fk a body experiences is proportional to the size of the
normal force N exerted on the body by the structure it slides against.
Mathematically, these two parameters (fk and N) are related as:

fk = µ k N,

where µ k is a proportionality constant called the coefficient of kinetic friction.
As µ k is normally given in a problem, all that is required to calcu-

late the magnitude of the kinetic frictional force on a body is the normal
force exerted by the supporting structure.

Note:  The statement kinetic friction is a function of normal force only--
surface area has nothing to do with it is true ONLY as long as you are dealing with
two rigid bodies that are sliding relative to one another.

The tires of a dragster do NOT fit this bill.  Dragster drivers spin their tires
before a race to make them sticky.  As such, the friction analogy for race tires is
more like the dragging of a piece of Scotch tape across a desk than the sliding of
rigid bodies--the bigger the surface area, the greater the stickiness and traction.
My gratitude to Jim Malone (Mercersburg Academy) for contacting Mike Trinko of
Goodyear's Race Group for this clarification.

c.)  Example of
kinetic friction:  A
block slides down a
frictional surface
(see Figure 5.6a).
The coefficient of
kinetic friction µ k
is known.  Figure
5.6b shows all the
external forces
acting on the block.

Note:  Notice that
the normal force N sometimes equals the weight mg of the sliding body (an
example of this can be seen in Figure 5.2b), BUT NOT ALWAYS.  For the
incline plane depicted above, N and mg are not even in the same direction.
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d.)  Static friction:  If a book, for instance, sits on a table and a tiny
external force is applied to the book parallel to the table top, the force may
or may not move the book.  There will be a force-of-opposition in this case
provided by static friction.  Its cause is the same as the partial atomic
bonding that produces kinetic friction with one exception; static frictional
bonding is stronger (with the two surfaces stationary relative to one
another, the atoms meld more deeply requiring a greater shearing force
to separate them).

If successively harder and harder forces are applied, the static
frictional force will counter each push with a force of equal and opposite
magnitude until the applied force is great enough to shear the partial
bonding between the surfaces.  At that point, the book will break loose
and begin to slide.

It has been experimentally observed that this maximum static fric-
tional force fs,max is proportional to the normal force N applied to the
book by the table.  Mathematically, these two parameters (fs,max and N)
can be related as:

fs,max = µ s N,

where µ s is called the coefficient of static friction.

Note:  Most physics books do not write the maximum static frictional
force as fs,max.  Instead, they simply write fs.  For simplicity, we will do the
same.  Be clear, though.  If you know fs,  you know only one of the infinitely many

possible static frictional forces that could be exerted between the two bodies.
Which force do you know?  The maximum static frictional force.

On the other hand, if you know fk you know the single, CONSTANT
kinetic frictional force that exists between two bodies sliding relative to one
another.  No matter what their velocity (assuming heating doesn't change the
characteristics of the two surfaces and alter the coefficient of kinetic friction), the
frictional force fk will always be the same.

The two quantities--fs and fk-- look similar as far as notation goes, but
they tell us two different things!

6.)  Push-me, pull-you force:

a.)  Any force that does not fall into one of the above categories falls
into this one.  Ex:  A shove from a friend.  The magnitude of such a force is
usually characterized by an F, possibly with a subscript.
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C.)  Newton's Second Law--APPROACHES:

1.)  There are two ways to deal with Newton Second Law problems.

a.)  The first is the formal, technically kosher way to proceed.  It has
specific steps and works on even the most convoluted force/acceleration
problems.  These include situations in which forces do not act in the
same direction as the motion (e.g., centripetal situations), situations in
which several objects within the system experience non-equal
accelerations, and, with slight modification, situations in which some of
the forces involved are velocity dependent.

b.)  The second approach is a simplified version of the first.  When
applicable, it makes the evaluation of N.S.L. problems considerably
quicker and easier (this can be very useful when dealing with multiple
choice AP questions).  As such, your initial temptation may be to focus on
that approach to the exclusion of the first.  That would be a serious
mistake.  Getting the answer isn't important, here.  Understanding the
approaches is.  To that end, both approaches will be presented in the
evaluation of the example problems in the next section.

Note:  The formal approach is the only approach presented in the
Solutions section at the back of the book.  If you have correctly used the
simplified version on a given problem, you can still use the book-end solutions
to check your final answer.

2.)  The simplified approach:  When dealing with the simplified
approach, the question you want to ask is, "What are the forces that motivate
or retard acceleration in the system?"  Determine those forces, equate them to
ma, where m is the total mass of the system, and you're done.

3.)  The formal approach:  The following is a step-by-step outline for the use
of the formal approach associated with Newton's Second Law as a problem-solving
tool.  Read through quickly, then continue on to see how the technique is used in the
Example Problems section.  Once you have read through that section, use this
outline as a reference whenever you tackle complex Newton's Second Law problems.

a.)  Look at the problem, blanch, think I couldn't possibly do this, then
begin the approach starting with Step b.

b.)  Draw a sketch of the entire system if one is not provided.

c.)  Take one body in the system and draw a free body diagram (f.b.d.) for it.
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i.)   A free body diagram is a sketch of the body-in-question (it is
normally depicted as a box) showing all the forces acting on the body.
These forces are depicted as arrows.  They don't have to be drawn to
scale but do have to be directionally accurate (i.e., if the force is in the
vertical, don't draw it halfway between the vertical and the
horizontal).

Note:  F.B.D.'s show only the forces that act on the body-in-question.  They
do not show forces that the body applies to other bodies.

ii.)  When drawing an f.b.d., be sure the orientation of the box
representing the body is the same as the actual orientation of the
body in the problem.  That is, if the object is a crate on an incline, the
f.b.d. should depict the object as a box on a slant, not as a box in the
horizontal--see Figure 5.6.

d.)  Choose x and y axes and place them on your f.b.d.  One axis must
be in the direction of the acceleration you are trying to determine.

Note:  This means your axes will not always be in the vertical and horizon-
tal.  Think about the direction of acceleration of the crate sketched in Figure 5.6.

e.)  If there are forces on the f.b.d. that are not along the x and y di-
rections, replace them with their x and y components.

f.)  Using N.S.L., sum the forces in the x direction and set them equal
to the product max.  If an additional relationship (equation) is needed,
sum the forces in the y direction and set them equal to the product may
(assuming you are interested in the variables involved).

g.)  Repeat the above process for all the bodies in the system or until
you have enough equations to solve for the unknowns you are interested in in
the system.

WARNING:  ASSUME NOTHING that can be derived using an f.b.d. and N.S.L.

D.)  Example Problems:

The easiest way to become comfortable with both the simplified and
formal approaches outlined above is to try a problem.  There are two in this sec-
tion: one that is relatively simple and a second that is more complex.  Both have
within them potential pitfalls.  Look for the sticking points.  Understanding
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these difficulties will make it easier for you to do other N.S.L.-type problems
later on your own (this is especially true of the formal approach).

Note:  While you are reading, remember that your goal is to generate
equations that relate the acceleration of one or more of the masses within the
dynamic (i.e., moving) system to the forces acting on that mass.

1.)  Example 1--The Run-Away
Car using the Formal Approach:
Somebody gives your car a shove, then
exits.  The car rolls freely on a
horizontal road toward a cliff.  You try
to stop the car by applying a known
force F at a known angle θ  (see Figure
5.7).  If the car's mass is m, derive a
general algebraic expression for the
acceleration of the car and, for the fun of
it, the normal force applied to the car by
the ground.  We'll use the formal
approach first.
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--Solution and Approach By-the-Numbers:

--Step a:  The sketch is seen in Fig. 5.7.

--Step b:  A free body diagram (f.b.d.) of the forces acting on the car is
shown in Figure 5.8.

Notice that the direction of the car's motion (i.e., the direction of its
velocity vector) is not the same as the direction of its acceleration.  That means,
simply, that the car is slowing down.
Notice also that the velocity vector is not
found on the f.b.d.  Only FORCES go on free
body diagrams.

--Step c:  Figure 5.9 shows the
placement of appropriate coordinate axes.
One is in the horizontal along the car's line
of acceleration, and the other is
perpendicular to the first.

Note:  Although it is customary to
make horizontal axes "+" to the right and
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vertical axes "+" in the upward direction,
you can define any direction as positive.

--Step d:  There is one force that is
off-axis--the pulling force F.  Figure 5.10
shows a revised f.b.d. with F replaced by
its components along the two axes.

Note:  In Figure 5.10, the vertical
component of F (i.e., F sinθ ) is positioned
out away from the body, but it actually
acts at the same point as does F.  It has
been drawn as part of a right triangle to
make its determination easier.  Having
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made that determination, you could re-position the vector as shown in Figure
5.11.  There is nothing wrong with doing this, though it does seem a waste of
time if its original positioning doesn't confuse you.

--Step e:  The sum of the forces in the x and y directions is shown below.
Notice that each has been preceded by a blurb that denotes what is about to
happen.  That is, the "  ∑ Fx " notation alerts the reader that you are beginning a
sum-of-the-forces-equals-"ma" process in a given direction.  You will be expected
to use this same notation as a preamble whenever you use Newton's Second Law.
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       ∑ Fx :

-F (cos θ ) = -m(ax)

     ⇒   ax =  F (cos θ ) / m.

Note 1:  Notice the negative sign in front of the component of F along the x
axis term?  If that force component had been in the opposite direction, its
magnitude would have remained F (cos θ ), but the sign in front of the component
would have been positive.  In other words, the expression F (cos θ ) stands for the
magnitude of the force.  When writing out the N.S.L. expression, you have to
account for the direction of a force by manually inserting the appropriate positive
or negative sign in front of its magnitude value.

Note 2:  Just as was the case with the force component discussed in Note
1, the acceleration term ax can be treated in one of two ways.  We can either
define it to be a vector, leaving its sign embedded within the symbol, or we can
define it to be a magnitude, unembed its sign, and manually put that sign in
front of ma.   For reasons that will become obvious later, the latter is
preferable.

Note 3:  This unembedding the sign isn't as scary as it looks.  If the
assumed direction for the acceleration is incorrect, we will simply end up with
an acceleration value that has a negative sign in front of its magnitude when
numerically calculated.  As magnitudes cannot be negative, the negative sign
simply means we have assumed the wrong direction for the acceleration.

--back to Step e:

In the y direction:

 
  
∑ Fy :

       +F (sin θ ) + N - mg = +m(ay) (= 0 as ay = 0).

As shown, the acceleration ay is zero (the car is not hopping up and down off the
road).  As such, this expression can be re-written as:

     N = -F (sin θ ) + mg.

Note:  The normal force exerted by the ground on the car is not equal to
the weight of the car.  This shouldn't be surprising.  The car is being pulled
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upward by the vertical component of F, requiring less normal force from the
ground to keep the car from falling through the road.

--Step f:  We have enough equations to solve for the parameters in which
we are interested.

Using the derived equations with a car mass of 1000 kg, we find that if

the angle is 30o and the pulling force is 800 nts (you are a gooorilla):

         ax =  F (cos θ ) / m

= (800 nt) ( cos 30o) / (1000 kg)

= .69 m/s2

and
       N = -F (sin θ ) + mg

= -(800 nt) (sin 30o) + (1000 kg) (9.8 m/s2)
= 9400 nts.

Note:  One newton is equal to about a quarter of a pound.

2.)  Example 1--The Run-Away Car using the Simplified Approach:
Somebody gives your car a shove, then exits.  The car rolls freely on a horizontal
road toward a cliff.  You try to stop the car by applying a known force F at a
known angle θ  (see Figure 5.7).  If the car's mass is m, derive a general
algebraic expression for the acceleration of the car.

a.)  The question to ask is, "What are the forces that motivate the car
to accelerate?"  In this case, the only force acting along the line of
acceleration is F (cos θ ).  Putting that equal to max yields:

      F cos θ= max
         ⇒   ax = (F cos θ )/m.

b.)  Although this undoubtedly seems wickedly easy in comparison to
the more plodding formal approach presented in the previous section,
remember what we are doing.  We are examining relatively simple
problems with an eye to developing techniques that will serve you well
when you are asked to take apart more complex scenarios.  Be patient.
As hard as it may be to believe, the formal approach is definitely the way
to go in many situations.
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3.)  Example 2--Incline
and Pulley using the Formal
Approach:  A string attached
to a known hanging mass m1
is threaded over a frictionless,
massless pulley and attached
at its other end to a second
known mass m2 that is sup-
ported by a frictional incline
plane.  The mass m1 is
additionally wedged
frictionlessly against the
incline by a known force F (see
Figure 5.12).  Both the angle of the incline θ 2 and the angle θ 1 at which F as-
saults the block are known.  The coefficient of kinetic friction µ k between m2 and
the incline is also known.  Assuming the string is inextensible (that is, it isn't
acting like a rubber band) and mass m2 is moving up the incline when first
viewed, determine the magnitude of the acceleration of the system.

Note 1:  I've done this analysis in steps to allow you to see how each of
the formal steps alluded to in the previous section plays out in a problem.  I'm
doing it this way ONLY because the approach is new to you and I want you to
see and understand what each formal step actually does.  At the end of the
presentation, I will redo the problem the way I would expect you to proceed if
such a problem were given on a test.

Note 2:  As the string is inextensible, the "magnitude of the acceleration of
the system" will be the magnitude of the acceleration of either of the two masses.
If we know a for one body, assuming a is a magnitude, we know it for the other.

--Solution and Approach By-the-Numbers:

--Step b:  The sketch of the system has already been shown in Figure 5.12.

--Step c:  We will begin with mass m1.  An f.b.d. of the forces acting on

m1 is shown in Figure 5.13.

Note:  The frictional force between any two objects sliding relative to one
another is fk= µ kN.  If there had been a frictional force acting between m1 and
the incline's vertical wall, we would need to determine N1 before we could
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determine fk.  In this case, there is no frictional
force along that surface so there is no need to deter-
mine N1.   Nevertheless, to be complete, our free

body diagram MUST INCLUDE N1 and all other
horizontal forces acting on m1.

Bottom line:  By definition, a free body
diagram includes ALL THE FORCES ACTING ON
THE BODY FOR WHICH IT IS DRAWN.

--Step d:  Figure 5.14 shows the off-
axis-forces broken into their components.

--Step e:  The sum of the forces in the v
direction is shown below.

  ∑ Fv :

     T - m1g + Fcos θ1 = -m1(av)
  = -m1a.

(a is defined to be the magnitude of the
acceleration of both m1 and m2).  This

implies:

     T = m1g - Fcos θ1 - m1a         (Equation A).

Note 1:  We know that the initial velocity of m1 is downward (m1 has to

be moving downward if m2 is moving up the incline), but we really don't know
whether the acceleration on m1 is up (i.e., m1 is slowing) or down (i.e., m1 is
increasing speed).  Not knowing the relative sizes of m1 and m2 makes it
impossible to tell which is happening.

As can be seen from the work done above, we are doing this problem on the
assumption that the acceleration of m1 is downward, hence the negative sign in front
of the m1a term on the right-hand side of N.S.L.  If we are wrong, it won't matter as
long as we are consistent throughout the problem.  That is, if we assume m1
accelerated downward, we must also assume that m2 accelerates up the incline.

As was noted some sections ago, when the mass values are put into the
final equation, the sign of the calculated acceleration magnitude will either be
positive or negative.  If it is positive, it means we have assumed the correct
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direction for the acceleration; if it is negative, it
means we have assumed the wrong direction.  The
magnitude will be the same in either case.

--Step f:  We have one equation (Equation A)
and two unknowns (T and a).  We need another
equation, which means we must look at m2's motion.
Starting the approach over again on m2:

For m2:

--Step b:  The sketch of the system is still
shown in Figure 5.12.

--Step c:  A free body
diagram of the forces acting on
m2 is shown in Figure 5.15.
Notice the frictional force acts
down the incline--opposite the
upward motion of m2.

--Step d:  Figure 5.16
shows the placement of ap-
propriate coordinate axes. The
line of m2's acceleration is along
the incline, so one of the axes
(labeled x) is placed along that
line with the second axis (labeled
y) perpendicular to the first.

--Step e:  Summing the
forces in the y direction will allow
us to solve for N2:

  
∑ Fy :

N2 - m2g (cos θ2) = m2 (ay)
        = 0             (as ay = 0)

     ⇒     N2 =  m2g (cos θ2)                                   (Equation B).

Now that we know N2, we can sum the forces in the x direction:
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  ∑ Fx :

T - m2g (sin θ2) - µ kN2 = m2(ax)

        = m2a,

(remember, a was defined as the magnitude of the acceleration of both m1 and

m2).  Substituting Equation B in for N2 yields:

T - m2g(sin θ2) - µ k [m2g(cos θ2)] = m2 a.

Substituting Equation A in for T yields:

[m1g - Fcos θ1 - m1a] - m2g(sin θ2) - µ k [m2g(cos θ2)] = m2a

    ⇒    a = [m1g - Fcos θ1 - m2g(sin θ2) - µ km2g(cos θ2)] / (m1+ m2).

--Step 6:  Finito!

4.)  Example 2: Incline and Pulley using
the Formal Approach as expected ON A TEST:

For m1:   (f.b.d., axes, and components shown in
Figure 5.14)

       ∑ Fv :

T - m1g + Fcos θ1 = -m1(a)
⇒     T = m1g - Fcos θ1 - m1a     (Equation A).

For m2:  (f.b.d., axes, and components shown in
Figure 5.16)

  
∑ Fy :

N2 - m2g (cos θ2) = m2 (ay) (= 0 as ay = 0)
       ⇒     N2 =  m2g (cos θ2)                      (Equation B).
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  ∑ Fx :

T - m2g (sin θ2) - µ kN2 = m2(ax)

           = m2a,

Using Equation B to eliminate N2 and
Equation A to eliminate T, we can write:

                         T                  - m2g(sin θ2) - µ k                N2      = m2a
[m1g - Fcos θ1 - m1a] - m2g(sin θ2) - µ k [m2g(cos θ2)] = m2a

 ⇒   a = [m1g - Fcos θ1 - m2g(sin θ2) - µ km2g(cos θ2)] / (m1+ m2).

5.)  Observations about Example Problem 2:

a.)  Let's try some numbers:  Assume m1= 5 kg, m2 = 8 kg, µ k = .4,

the applied force F = 3 newtons, θ 1 = 50o, and θ 2 = 30o.  Re-ordering,
remembering that the magnitude of the acceleration of gravity g = 9.8
m/s2, and omitting units to save space, the calculation becomes:

        a = [[m1g - m2g(sin θ2) - µ km2g(cos θ2)] - Fcos θ1] / (m1+ m2)

   = [g [m1 - m2(sin θ2) - µ km2(cos θ2)] - Fcos θ1] / (m1+ m2)

   = [(9.8) [(5 ) - (8 ) sin 30o - (.4) (8) cos 30o] - (3) cos 50o] / (5 + 8 )
   = -1.48 m/s2.

Note:  We have a negative sign in front of the calculated acceleration.
Why?  In the problem, the hanging mass m1 was stated to be traveling down-
ward (that was the way the problem was set up).  Additionally, we assumed
that m1 was accelerating downward (we didn't know for sure--that was our
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guess).  What the negative sign means is that, given the mass-values used, m1's

acceleration was not downward but upward.  Evidently, the hanging mass
moved downward, slowing in the process.

b.)  If m1 had been moving upward, what would
have been different?  The free body diagram for m1
would have looked identical to that shown in Figure
5.13, but m2's f.b.d. would have been different (see
Figure 5.17).  We still wouldn't have known the
acceleration's direction, so we still would have had
to assume one.  If we had taken it to be up the
incline, the final acceleration expression derived
from Newton's Second Law would have been:

        a = [[m1g - m2g(sin θ2) + µ km2g(cos θ2)] - Fcos θ1] / (m1+ m2)

   = [g [m1 - m2(sin θ2) + µ km2(cos θ2)] - Fcos θ1] / (m1+ m2)

   = [(9.8) [(5 ) - (8 ) sin 30o + (.4) (8) cos 30o] - (3) cos 50o] / (5 + 8 )
   = +2.69 m/s2.

Notice the acceleration value in this case turns out to be positive, im-
plying that the assumed direction-of-acceleration for m1 (downward) was

correct (given the mass values we've used in the evaluation).  Evidently, in this
case, the hanging mass moved upward, slowing in the process.

Conclusion:  In both cases, friction was great enough to slow the motion.

6.)  Example 2--Incline and Pulley using the Simple Approach:  A string
attached to a known hanging mass m1 is threaded over a frictionless, massless

pulley and attached at its other end to a second known mass m2 that is sup-
ported by a frictional incline plane.  The mass m1 is additionally wedged
frictionlessly against the incline by a force F (see Figure 5.12).  Both the angle of
the incline θ 2 and the angle θ 1 at which F assaults the block are known.  The
coefficient of kinetic friction µ k between m2 and the incline is also known.
Assuming the string is inextensible (that is, it isn't acting like a rubber band)
and mass m2 is moving up the incline when first viewed, determine the
magnitude of the acceleration of the system.

a.)  As before, the question to ask is, "What are the acting forces that
motivate the system as a whole to accelerate?"
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b.)  In this case, there are several forces motivating the total mass of
the system (i.e., m1 + m2) to accelerate.  They are:

i.)  The force of gravity on m1:  Its magnitude is m1g and its effect
via the string is to attempt to accelerate m2 UP the incline.

Note:  If we are talking about gravity on m1, why do we care about m2?
We need some way to assign positiveness or negativeness to forces acting on the
SYSTEM when, in fact, those forces may well be acting on different bodies
oriented in entirely different ways from one another.  The easiest way to do that
is to pick a single body in the system and determine how a given force will
ultimately affect that body.  In this case, gravity is pulling m1 down.  This will
tend to pull m2 UP the incline, so I will arbitrarily identify that effect to be
associated with a positive force.

ii.)  The component of F that pushes m1 upward:  Its magnitude
will be F cosθ 1.  Its effect is to attempt to accelerate m2 DOWN the
incline, so we will call it a negative force.

iii.)  The component of gravity that pushes m2 DOWN the incline:
Its magnitude is m2g sinθ 2 (this is the component of gravity along

the line of the incline), and we will call it a negative force.

iv.)  The force of friction on m2:  With the normal force equal to
m2g cosθ 2, friction's magnitude is fk = mkN = mk(m2g cosθ 2).  The
direction of the frictional force will be opposite the direction of
motion, or DOWN the incline, making it a negative force.

v.)  The temptation might be to add in the tension force.  In this
case, tension is an internal force--a force that exists as a consequence
of the interaction of pieces of the system.  Internal forces will not
affect the overall motion of the system.  That is, if we add the tension
force on m1 (this will be upward on m1 motivating m2 to accelerate
down the incline) to the tension force on m2 (this will motivate m2 to
accelerate up the incline), the net effect will be zero.  As such, tension
IN THIS CASE is ignored.
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c.)  Summing up all of the forces and putting them equal to the total
mass in the system, we get:

        m1g - F(cos θ1) - m2g(sin θ2) - µ k(m2g cos θ2) = (m1 + m2)a
⇒    a = [m1g - Fcos θ1 - m2g(sin θ2) - µ km2g(cos θ2)] / (m1+ m2).

Note:  AGAIN, don't get too excited about all of this.  The simplified
approach isn't always going to work.  Get to know both procedures!

E.)  Friction and Free Fall:

1.)  Consider a body of mass m free falling in a fluid from rest under the
influence of gravity.

a.)  For pure free fall with no fluid-produced friction, theory predicts
that the body's acceleration will be equal to g and the body's velocity at
any point in time will (according to the kinematic equations) be equal to v
= -g∆t (this comes from v = v1 + (-g)∆t, with v1 = 0 and ∆t being the time of

flight).

b.)  The situation changes dramatically when friction is taken into account.

2.)  Friction in a free fall situation is caused by molecules colliding with
the body as it falls through the fluid.  The faster the object travels, the more
molecules are hit per unit time and the more retarding force is generated.  When
this frictional force completely counterbalances gravity, the net force equals zero
and the body stops accelerating (i.e., its velocity does not change from then on).
Once the body reaches that state, it is said to be traveling at "terminal
velocity."

3.)  Assume a frictional force that is proportional to the magnitude of the
velocity of the body (i.e., f α  v, which is to say f = kv, where k is a proportionality
constant related to the density of the material through which the body travels).
We want to determine two things: the body's terminal velocity and the body's
velocity as a function of time.

Minor Note:   If we had been dealing with air friction, the frictional force
would have been better approximated as f = kv2.

4.)  The first of the two questions is relatively easy:
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kva.)  Figure 5.18 shows the situation.  The body ac-
celerates until the frictional force is exactly equal and
opposite the force of gravity.  At that point, the acceler-
ation becomes zero and we can use N.S.L. to state:

  
∑ Fy :

  kvterm - mg = m(a)
 = 0      (as "a = 0")

Dividing both sides by k yields the maximum velocity the body will
attain.  This terminal velocity is vterm = (mg)/k.

5.)  Determining the body's velocity as a function of time is a considerably
more difficult process.  (Note that for simplicity, v(t) will be written from here
on as v).

a.)  Begin by writing N.S.L. in its most general form for the forces
acting on the body at an arbitrary point in time t:

     
  
∑ Fy :

       kv - mg = -m(a)
          = -m[dv/dt].

IMPORTANT Note:  The sign selection in front of the ma term isn't as obvious
as one might expect.  READ Section I at the end of the chapter to understand the
problem and its solution.

b.)  We need to manipulate this equation to get both velocity-related
terms (i.e., both v and dv/dt) on the same sides of the equal sign.  By di-
viding both sides by -m, then rearranging, we get:

          
  

dv
dt

= − k
m

v − g




.

c.)  We need to link the v and dv term by multiplication or division
(the reason for this will become evident shortly).  To do so, we rewrite our
equation as:

       
  

dv
dt

= − k
m





 v − mg

k





.
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Note:  No, you probably wouldn't have thought to do this if you were on
your own.  Then again, if you already knew the tricks of the trade you would not
need to take this class!

d.)  The above expression states:  The time rate of change of velocity
equals a mass related constant times a velocity related quantity.

e.)  We are now in the position to divide both sides by v - mg/k and
multiply both sides by dt (ah, the sound of mathematicians groaning
everywhere--it's OK, though, the equation that follows is true and good if
the equation above is assumed).  Doing so yields:

  

dv

v − mg
k







= − k
m





 dt .

f.)  The above equation states:  A differential change in velocity  dv
divided by a velocity dependent quantity evaluated at time t (where t is
the time about which dt straddles), is equal to a constant times the size
of the differential time interval dt over which the velocity change occurred.

Fortunately for those not into semantics, what the equation says is
not nearly as important as what we can do with it.

g.)  If we assume the body's velocity at t = 0 is v = 0, we can integrate both
sides of this equation (i.e., summing the differential velocity-related-quantities
over the time interval, etc.) between t = 0 and t, yielding:

  

dv

v
mg
k

k
m

dt
v

v t

t

t

−





= −



= =∫ ∫0 0

( )
.

h.)  The integral ∫dt simply equals t evaluated at t = 0 and t.  The in-
tegral ∫dv/(v + c), where c is a constant, equals the natural log of the
absolute value of v + c, evaluated at the limits.  As such, we can write:

  

      

   

dv

v
mg
k

k
m
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v
mg
k

k
m

t

v

v t

t

t

v

v t

−



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




⇒ − = −





= =

=
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0

( )

( )

ln .
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i.)  Noting that v(t) is always smaller in magnitude than the termi-
nal velocity of mg/k, the argument v - mg/k will always be negative.  That
means we can remove the absolute value sign in the natural log
expression as long as we re-write the argument as mg/k - v(t) (this will
make that difference always positive, as required by the absolute value
sign we wanted to remove).  Doing so, then evaluating, yields:

  

                            

                       

   

ln

ln

ln ( ) ln .

( )

( )

v
mg
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k
m

t
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j.)  The expression ln (a) - ln (b) equals ln (a/b).  As such, our ex-
pression can be re-written as:
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.
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k.)  We need to get the velocity variable out from under the "ln"
function.  As eln (a) = a, we can use both sides of the equation as expo-
nents of e and write:
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l.)  Notice that our expression makes sense at the extremes.  That is:

i.)  At t = 0, the e-(k/m)t expression becomes "1" (i.e., e0 = 1) and
the right-hand side of the equation becomes ZERO.  That is exactly
what our velocity was supposed to be at t = 0.

ii.)  At t = ∞, the e-(k/m)t expression becomes zero (i.e., the ex-
pression e-(k/m)t equals 1/e(k/m)t, which equals 1/e ∞ = 0 at t = ∞)
and the right-hand side of the equation becomes mg/k.  That, if you
remember, was the terminal velocity of the body.  In short, the ex-
tremes seem to fit our expression nicely.

6.)  Why do we care?  The Advanced Placement Test has, on occasion, had
questions like:  A body accelerates from rest under the influence of a given velocity
dependent force.  Determine the body's velocity as a function of time (i.e., what is
v(t)).  The functions are not always as stinky as the one we have just examined,
but the approach-for-solving is similar!

F.)  Centripetal Force:

1.)  A net force acting on a body produces an acceleration, and an ac-
celeration implies a change of velocity.  So far, the only accelerations we have
dealt with have been those that change the magnitude of a body's velocity--that
make objects speed up or slow down.  There is another way an acceleration can
change a body's motion: it can change the direction of the body's velocity vector.

2.)  Example--the M.O.B. maneuver:

a.)  In days of yore when rock-n-roll was in and '55 Chevys were the
hot rod of choice, there was a technique the execution of which guar-
anteed, if not romance, at least close contact between a guy and his date.
It was called the infamous M.O.B. maneuver.

The Situation:  A boy picks up his date (we will assume the boy is
driving).  The two like one another.  The vehicle is a 1955 Chevy without
seat-belts (the norm for 1950's cars).  It sports a bench seat (also the
norm for 1950's cars).  She gets in and sits next to the passenger-side
door.  He'd like her to sit next to him but is too bashful to ask her to move
over.  She'd like to sit next to him but is too shy to do it on her own.
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Solution: the M.O.B. maneuver.

The Maneuver:  Traveling at
30 miles per hour, the boy casually
approaches an appropriate inter-
section (see Figure 5.19).

Upon reaching the corner, he
makes a hard right turn without
warning.

Consequence: she finds herself
seated next to him in short order.

How so?
He is attached to the turning

car via the steering wheel.  As the
car turns, the steering wheel
exerts a force on him that makes
him move on the same semi-
circular path the car follows.  She,
on the other hand, is not attached
to the car (the maneuver works
best if the seat has been waxed
beforehand).  As there are no
forces acting on her, she does ex-
actly what any force-free body will
do--she continues to move in a
straight line (Newton's First Law--
bodies in motion tend to stay in
motion in a straight line unless
impinged upon by a force).  Doing
so insures that he and she will, in-
deed, meet somewhere around the
BINGO in Figure 5.20.

Note:  You might wonder why it is called an MOB maneuver?  Although
it is probably politically and socially improper today, in the 1960's it stood for
Move Over, Baby.

b.)  The Point:  An acceleration, hence a net force, is needed to change
the direction of a moving body (hence, the direction of the body's velocity
vector).  That force will be perpendicular to the direction-of-motion, which
is to say perpendicular to the direction of the velocity vector.
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Note 1:  The boy entered the curve at 30 mph, and he left the curve at 30
mph.  The magnitude of his velocity didn't change, but the direction did.  That
would not have been the case if the force provided by the steering wheel had
been in any direction other than perpendicular to the boy's path.

Note 2:  Assuming this direction-changing force is constant in magni-
tude, it will always make the body move along a circular path about a fixed
center.  Forces that do this are often referred to as "center-seeking forces."

Note 3:  The phrase center-seeking is a label only.  In a given situation,
the combination of forces that collectively qualify for that moniker must exist
naturally within the system.  They can be normal forces, tension forces,
gravitational forces, frictional forces, push-me-pull-you forces, or some com-
bination thereof.

Note 4:  The word "centripetal" means center-seeking.  It is the com-
bination of forces that is center-seeking that is labeled the net centripetal force.
Again, this is a label only.  We are not talking about a new kind of force--only a
new kind of situation in which
the same old forces might be
applied.

Note 5:  Students often
become confused when
dealing with centripetal forces
generated by friction between
a car's tires and the road.  For
clarification, consider the car
example above with one
modification: assume the car
is driving on a dirt road.
What happens when the car's
wheels are cranked into a
hard, tight turn (see Figure
5.21)?

The car's tires apply a
frictional force to the ROAD
and end up throwing dirt outward away from the car's ultimate path.  The force
the car applies to the road is, therefore, directed outward relative to the
ultimate path of the car.  On the other hand, the road applies a frictional force
fcar to the car which, according to Newton's Third Law, is equal in magnitude

and opposite in direction to the force the car applies to the road.
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This force, fcar, has one component that is oriented opposite the direction
of the car's motion and another component that is perpendicular to the direction
of motion.  The latter component pushes the CAR inward, making it follow a
curved path.  This is the center-seeking (centripetal) force in the system.

When using Newton's Second Law to analyze the motion of the car, the
only forces we are interested in are the forces acting on the car.  As such, the
force the car applies to the road has no place in the analysis.

3.)  Other Examples:

a.)  Consider the moon
orbiting the earth:  The
moon does not move off into
space in a straight line be-
cause the earth exerts a
gravitational force on the
moon, pulling it away from
the path it would have
taken if it had been force-
free (see Figure 5.22).
Consequence: the moon is
pulled into a nearly circular
path around the earth.

 In this case, gravity is
the center-seeking
(centripetal) force that
naturally exists within the system.

Note:  The moon's path isn't
perfectly circular due to the initial
conditions under which the moon's
motion was generated.

b.)  The hammer throw in
Olympic competition is
executed using a mass (a ball)
attached to a chain.  The
contestant grasps the chain,
swings it around and around
until he or she reaches a
relatively high spin-speed, and
then lets the ball and chain go.
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The proper technique does not suggest twirling the ball overhead in a
horizontal plane, but let's assume old Joe is a bit off-form and does not
know any better (see Figure 5.23).  From whence does the center-seeking
(centripetal) force on the ball come?

It comes from the horizontal component of the tension force provided
by the chain.  That component is
the centripetal force in the system.

4.)  Example Problem--Deadman's
Curve:  A car approaches a curve of known
radius R.  The coefficient of static friction
between the tires and the road is µ s.  At
what maximum velocity can the car take
the curve without breaking traction and
spinning out (Figure 5.24 shows situation
from above)?

Note:  Assume the wheels are
turned so slightly that the component of fs
that opposes the car's motion is zero.
That is, assume fs is fully centripetal.

a.)  This is a Newton's Second
Law problem.  We need to identify
the important forces acting on the
car, so we will use an f.b.d. perspec-
tive that views the car head-on (the

N

mg

y

x

f  = u  Ns s

front view
    of car

FIGURE 5.25

view shown in Figure 5.25 depicts that
perspective).

b.)  For the vehicle to follow a cir-
cular path, we know there must be a
force, hence acceleration, in the center-
seeking direction (i.e., in the direction
oriented toward the center of the circle
upon which the car is moving).

Note:  The centripetal direction will be
perpendicular to the direction of motion.  As
seen in our sketch, the car is coming out of the
page which means the center-seeking direction
is to the right in the plane of the page.
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c.)  Using N.S.L., we get:

  
∑ Fy :

                   N - mg = may.

As ay = 0 (the car is not jumping up off the road), we get:

      N = mg.

 
  
∑ Fcenter-seeking :

                       µ sN = mac.

Substituting in N = mg from above and solving for ac, we get

       ac = µ s(mg)/m
          = µ sg.

Note:  This will be the maximum acceleration the road/tire contact can
generate.  How so?  Because µ sN is not just any static frictional force, it is the
maximum static frictional force.  It will be related to the maximum centripetal
acceleration available to the car when it attempts to follow the curve, which in
turn is related to the maximum velocity possible.

d.)  If we had a constant acceleration whose direction was tangent to
the curve, the velocity's magnitude would change with time and we could
determine v(t) by solving the expression a = dv/dt.  The problem?  The
acceleration ac is radially directed.  That means it is not oriented to
change the velocity's magnitude--it is oriented to change the velocity's
direction.  As such, neither a = dv/dt nor kinematics will help us.

We need to derive a relationship between the velocity of the car and
the acceleration component that is changing the car's direction of motion
(i.e., the centripetal acceleration).  That derivation is at the end of the
chapter (you'll never be asked to reproduce that derivation by yourself--it
has been included so that you can convince yourself that nothing dirty has
been done here).

e.)  The bottom line of that derivation:  if a body moving with velocity
magnitude v is to move into a circular path of radius R, it must ex-
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perience a center-seeking (centripetal) acceleration ac numerically equal

to v2/R.

f.)  With this information, we return to our problem.  If ac = v2/R

and, from above,

    ac = µ sg,
we get

v2/R = µ sg

       ⇒      v = ( µ sRg)1/2.

Note 1:  This solution does make sense intuitively.  Think about your
own experience on the highways and byways of America: tight turns are taken
slowly while wide turns are taken at higher speeds.  That is exactly what our
equation predicts.  The larger the curve (i.e., the bigger R), the larger the
predicted maximum velocity.

Note 2:  The units for the variables under the radical had better work out
to meters per second. Checking: the coefficient of static friction is unitless; R has
the units of meters; and g the units of meters per second squared.  The net units
under the radical are meters squared per seconds squared, the square root of
which is meters per second.

5.)   Example Problem 2--Deadman's Curve with
Banked Incline:  Our car now approaches a banked curve of
angle θ , radius R, and coefficient of static friction µ s.  What
is the maximum velocity vmax with which the car can take
the curve without flying up over the top of the embankment?

Note 1:  As viewed from above, the car moves in a
semi-circular path that looks exactly like the path taken by
the car in the previous problem.  We will, therefore, use
Figure 5.24 to depict the overhead view here.  A head-on
perspective is shown in Figure 5.26.  A free body diagram for
the situation is shown in Figure 5.27.

Note 2:  The maximum velocity will occur when the
maximum static frictional force just holds the car from
breaking loose and sliding up over the top of the bank.  That
frictional force must, therefore, be directed down the incline.
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Note 3:  One axis must be along the line of centripetal acceleration. That
center-seeking direction is oriented along the line of the RADIUS of the car's
motion.  That direction is not along
the line of the incline.  That is, even
though the car is physically tilted, the
direction toward the CENTER of the
car's circular path is in the horizontal.
As such, one of the axes has been de-
fined in that direction.

a.)  Examining the
modified free body diagram
(modified in the sense that
axes and force components
have been included) shown in
Figure 5.28, Newton's Second
Law yields:

  
∑ Fy :

N cos θ - mg - fs sin θ  = may.

b.)  As ay = 0, and noting that fs= µ sN, we get:

     N cosθ  - mg - ( µ sN) sinθ  = 0

        ⇒   N = (mg) / (cos θ  - µ ssin θ ).

c.)  In the center-seeking direction:

  
∑ Fcenter-seeking :

      N sin θ  + fs cos θ  = mac.

d.)  Substituting in fs= µ sN, N = [(mg)/(cos θ  - µ ssin θ )], and letting

ac = v2/R, the equation
      

   N sin θ  + µ sN cos θ  = mac
becomes

     [(mg)/(cosθ  - µ ssinθ )]sinθ+µ s[(mg)/(cosθ  - µ ssinθ )] cos θ  = mv2/R.

e.)  Dividing out the m's and rearranging, we get:
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s

vmax = [R (g sin θ+ µ sg cosθ )/(cosθ  - µ ssinθ )]1/2.

Note 1:  When θ  = 0 (i.e., the same situation we had in the Example
Problem 1), we get vmax = (µ sRg)1/2 as expected.

Note 2:  For θ  = 30o, µ s = .25 (this corresponds to a relatively slick road-
way), and a radius of 50 meters, the calculated value of vmax= 21.77 m/s.  This
is right around 50 mph.

6.)  Alternate Example--Problem 2:  The free body diagram in Figure 5.29
presents another possibility.  If the angle of the inclined road is great enough, it
is possible that the maximum static frictional force on a stationary or slowly
moving car would not be large enough to hold the car on the incline.
Consequence: the car would break loose and slide down the incline.

In that case, a car could make it through the turn but it would have to be
moving with a velocity above some minimum value.  As the car would want to
slide down the incline for velocities below that minimum, the static frictional
force would be up the incline (the car
wants to slide down).

Consider the car and
embankment used in Part 5 above.
What is the minimum velocity vmin
the car can take the curve without
sliding down into the infield at the
bottom of the embankment?

a.)  The f.b.d. for this situa-
tion is shown in Figure 5.29:

b.)  N.S.L. maintains:

  
∑ Fy :

       N cos θ  - mg + fs sin θ  = may.

As ay = 0 and fs= µ sN, we get:

N cos θ  - mg + ( µ sN) sin θ  = 0
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         ⇒      N = (mg) / (cos θ  + µ ssin θ ).

c.)  In the center-seeking direction:

  
∑ Fcenter-seeking :

     N sin θ  - fs cos θ  = mac.

d.)  Substituting fs= µ sN; substituting the quantity [(mg)/(cos θ  +

mssin θ )] for N; and setting ac = v2/R, the equation

N sin θ  - µ sN cos θ  = mac

becomes

       [(mg)/(cosθ  + µ ssinθ )]sinθ  - µ s[(mg)/(cosθ  + µ ssinθ )]cosθ  = mv2/R.

e.)  Dividing out the m's and rearranging, we get:

         vmin = [R (g sin θ  - µ sg cos θ )/(cos θ  + µ s sin θ )]1/2.

Note 1:  When θ  = 0 (the situation we had in the Example Problem 1),
we get:

 
      vmin = (- µ sRg)1/2,

an imaginary value.  This implies that there is no minimum speed at which a
car could take a flat curve and not make it through.

Note 2:  For θ  = 30o, µ s = .25 (again, this is a very slick roadway), and a
radius of 50 meters, the calculated value of vmin = 11.9 m/s.  This is around 25
mph.  Below this speed, the car will not hold traction with the road and will
slide down toward the bottom of the bank.

7.)  Derivation of Centripetal Acceleration Expression: You will not be
asked to duplicate this proof; it is included for the sake of completeness.
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It was stated above that the
magnitude of any centripetal acceleration
acting on an object moving in a circular
path is numerically equal to v2/R, where v
is the magnitude of the object's velocity
and R the radius of the path.  The
derivation from which that claim comes
follows:

a.)  A body with a constant
velocity-magnitude v moves on a
circular path of radius R as shown
in  Figure 5.30a. Between times t1
and t2, the body moves through an
angular displacement of ∆θ .
Figure 5.30b shows this set-up
along with a secant connecting the
position points at times t1 and t2.
Notice that:

i.)  The triangle is isosceles
(two of the sides are equal in
length to the radius R of the
motion);

ii.)  The third side of the triangle (the secant) is identified as ∆ s;

iii.)  ∆ s and the arc length subtended by ∆θ  are not equal as long
as ∆θ  is large; and

iv.)  The arc length is numerically equal to the velocity-magnitude
v times the time interval ( ∆ t) required to travel between positions 1
and 2, or:

 arc length = v ∆ t.

 b.)  The vector difference between the
velocity vectors at t1 and t2 yields a change of
velocity vector ∆ v over that period of time. That
vector subtraction is shown in Figure 5.31.
Notice that:
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 i.)  The direction of the vector difference ∆ v is approximately
oriented toward the center of the circular path on which the body
moves;

ii.)  The triangle created by the subtraction is isosceles (two of the
sides are numerically equal to the magnitude of the constant velocity
v); and

iii.)  Because the velocity vectors are perpendicular to their re-
spective radii, the isosceles triangle created by the radii and secant
(Figure 5.30b) is similar to the triangle created by the velocity-vector-
difference (Figure 5.31).

c.)  With similar triangles, the ratio of any two sides of one triangle
will be equal to the ratio of the corresponding sides of the second
triangle.  As such, we can write:

∆ v/v = ∆ s/R.

d.)  If the time interval is allowed to become very small (i.e., t1 and t2
approach one another), the arc length approaches ∆ s and we can write:

arc length = ∆ s (in the limit as ∆ t goes to zero).

But the arc length equals v ∆ t, which implies that as ∆ t →  0,

     ∆ s →  v ∆ t.

e.)  Plugging this back into our ratio, we can re-write ∆ v/v= ∆ s/R as:

      
  
lim∆t→0

∆v
v( ) = v∆t

R( ).
Rearranging yields:

      
  
lim∆t→0

∆v
∆t( ) = v2

R




 .

f.)  The left-hand side of this expression is the definition of instan-
taneous acceleration.  What acceleration?  The acceleration whose di-
rection is center-seeking.
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Bottom line:  The magnitude of the centripetal acceleration required to
move a body whose velocity magnitude is v into a circular path of radius
R is v2/R.

G.)  A Note About MASS:

1.)  Although the material you are about to read will not be included on a
test, it is important that you understand what mass really is.  READ THIS
SECTION ONCE.  If nothing else, it will help you stave off massive confusion
later on when we get to rotational motion.

2.)  There are certain characteristics that are true of all material objects.
For instance, all objects have a tendency to resist changes in their motion.

a.)  Example:  A rock placed in space will not suddenly, sponta-
neously accelerate for no reason.  It will sit in its place until a force
makes it move.

b.)  The unwillingness of an object to spontaneously change its motion
is called inertia.  As the amount of inertia an object has is intimately
related to how much force will be required to accelerate the object,
quantifying the idea of inertia is important.  Early scientists satisfied that
need by defining an inertia-related quantity they called "inertial mass."

c.)  The system they devised is simple.  A platinum-iridium alloy
cylinder, currently housed in a vault at the Bureau of Weights and
Measures in Sevres near Paris, France, was defined as having one
kilogram of inertial mass.  All other inertial mass values are measured
relative to that cylinder.  That is, an object with the same amount of
resistance to changing its motion as does the standard is said to have "one
kilogram of inertial mass."  An object with twice the resistance to changing
its motion is said to have two kilograms of inertial mass; one-half the
resistance implies one-half kilogram of inertial mass, etc.

In other words, the inertial mass of a body gives us a numerical way
of defining how much inertia an object has RELATIVE TO THE
STANDARD.  Put still another way, inertial mass is a relative measure of
a body's tendency to resist changes in its motion.

d.)  Although France is a beautiful country, it would be terribly inconve-
nient for laboratory scientists around the world if they had to travel to France
every time they wanted to determine an inertial mass value, so scientists fur-
ther generated a laboratory technique for measuring inertial masses.  It uti-
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lizes an inertial balance--a tray mounted on two thin blades that allow the
tray to vibrate back and forth.  The more mass that is placed in the tray, the
slower the tray vibrates.  A simple formula relates the tray's vibratory rate
(its period of motion) to the amount of inertial mass there is in the tray.

Although it works, using an inertial balance is a VERY CUMBER-
SOME and time consuming operation.

3.)  There are other characteristics that are true of material objects.  For
instance, all massive objects are attracted to all other massive objects (at least
according to Newton).  We call this attraction gravity.

a.)  A measure of a body's willingness to be attracted to another body is
related to what is called the "gravitational mass" of an object.

b.)  To provide a quantitative measure of gravitational mass, scien-
tists have taken an agreed upon object as the standard against which all
subsequent gravitational mass measurements are made (again, this
standard is housed today in Sevres, France).

c.)  The technique for measuring gravitational mass utilizes a bal-
ance or electronic scale.  The object is placed on a scale which consists of a
spring-mounted pan.  The gravitational attraction between the object and
the earth pulls the object toward the earth and compresses the spring in
the process.  The scale is calibrated to translate spring-compression into
gravitational mass (assuming that is what the scale is calibrated to
read--in some cases, such scales are calibrated to read force, hence
American bathroom scales measure in pounds).

MEASURING GRAVITATIONAL MASS IS EASY.

4.)  Somewhere down the line someone noticed a wholly unexpected and
profoundly improbable relationship between gravitational and inertial mass.
It was observed that if the same standard (that is, the same object) was used
for both, a second object with twice the gravitational mass relative to the
standard would also have twice the inertial mass.

a.)  THIS DOES NOT HAVE TO BE THE CASE.  There is no obvious
reason why a body with twice the resistance to changing its motion
(relative to the standard) should also have twice the willingness to be
attracted to other objects.  The two characteristics are completely inde-
pendent of one another, yet they appear to parallel one another to a high
degree of precision (in fact, the best comparisons to date have accuracy to
around 109 with no discrepancy found even at that order of magnitude).
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b.)  Scientists could have called the units of gravitational mass any-
thing they wanted, but because they knew the parallel between gravita-
tional mass and inertial mass existed, they decided to give gravitational
mass the units of "kilograms."

That means that as defined, a body with two kilograms of gravita-
tional mass also has two kilograms of inertial mass.

c.)  The beauty of this choice is obvious.  Newton's Second Law relates a
body's acceleration to the force applied to it.  The proportionality constant--
the mass term--is an inertial mass quantity (the body's resistance to changing
its motion is the characteristic that governs how much acceleration the body
will feel when a given force is applied).  Determining inertial masses in the lab
is a pain in the arse--inertial balances are not easy devices to set up or use.
But gravitational mass is easy to measure.  All you need is an electronic
balance.  So when you or I or any lab technician needs to know a body's inertial
mass, all we have to do is measure the body's gravitational mass on a scale
and we have what we want.

d.)  Bottom line:  Due to the parallel, most people no longer distinguish be-
tween gravitational mass and inertial mass.  As the two are numerically inter-
changeable, people nowadays simply refer to a body's "mass" and leave it at that.

5.)  There is an interesting consequence of this peculiar parallel between
gravitational mass and inertial mass which is most easily observed by
considering the following question:  If a body with two kilograms of gravitational
mass is attracted to the earth twice as much as a body with only one kilogram
of gravitational mass, why doesn't the two kilogram mass free fall toward the
earth faster than the one kilogram mass?

a.)  The answer is simple.  A body with twice the gravitational mass also
has twice the inertial mass; it needs a greater force to overcome its greater
inertia.

b.)  In short, it does not matter how massive an object is, its inertia
and its willingness to be attracted to the earth will always balance one
another out making the object accelerate at the same rate as all other
objects (assuming you ignore air friction, etc.).

H.)  Fictitious Forces:  Centrifugal And Others:

1.)  Although the phrases look and sound similar, the ideas behind
centripetal force and centrifugal force are patently different.
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a.)  The phrase centripetal force is a label used to identify forces that
motivate a body out of straight line motion and into curved motion.
These center-seeking forces must exist naturally within a system.

b.)  The phrase centrifugal force is a label used to identify forces that
must be ASSUMED TO EXIST if one is to use Newton's Second Law in
analyzing problems from a non-inertial (i.e., accelerated) frame of reference.
What does this mean?  Read on.

2.)  Consider the following example (a
slight modification of the M.O.B. maneuver):
You are driving in your car.  You notice that the
box sitting next to you slides away from you as
you make a left turn (Figure 5.32).  Does that
mean there is a force acting to push the parcel
toward the right door?

a.)  The answer to the question is no.
The only forces that are acting on the
parcel are gravity and a normal force
from the seat (we'll ignore friction).  So
what is going on?

b.)  What is really happening is that you
are moving away from the parcel (it continues moving in a straight line path,
relative to the street) as you and the car are centripetally forced into the turn.

c.)  The problem?  If you wanted to analyze the parcel's motion from
your frame of reference (i.e., from a frame attached to the centripetally
accelerating car), Newton's Second Law shouldn't work.  Why?  Because
N.S.L. only works in non-accelerated frames of reference.

d.)  What's nice is that you can make N.S.L. work if you are clever. If
you assume there exists a fictitious force acting to push the parcel away
from you, Newton's Laws will work just fine.  For circular motion, that
force is called a centrifugal force.  Its magnitude is equal to mv2/R.  In
short, you don't have to analyze the problem from a non-inertial frame of
reference, but you can if you are so disposed.

3.)  After all that, reconsider the initial statement in Part H-1a and b:

a.)  The phrase centripetal force is a label used to identify forces that
motivate a body out of straight line motion and into curved motion.
These center-seeking forces must exist naturally within a system.
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b.)  The phrase centrifugal force is a label used to identify forces that must
be ASSUMED TO EXIST if one is to use Newton's Second Law in analyzing
curved-path problems from a non-inertial (i.e., accelerated) frame of reference.

Big Note:  What you are about to see is for your own edification only.  You
will not be tested on it.  It has been included because the idea of fictitious forces is
used a lot at the college level in analysing certain types of physics problems.  If you
ever need to understand the approach, the following should help.

4.)  You are tethered to the
center of a rotating platform (Figure
5.33a).  You feel a frictional force that
keeps you from sliding laterally across
the platform, you feel gravity, you feel a
normal force, you feel the force of the
tether pulling you in, and you feel what
appears to be a force pushing you
outward.  Let's asume you've measured
the tension in the tether and found it to
be T.  How fast is the platform moving?  Analyze this situation from both an
inertial and a non-inertial frame of reference.

a.)  From an inertial frame of reference (i.e., a
stationary observer looking from the platform's
side), the forces acting on you are shown in Figure
5.33b.  Using N.S.L., we can write:

  ∑ Fx :

T  = m(ax)

= m(v2/R)

⇒     v = (TR/m)1/2.

f.b.d. as depicted in non-inertial
        frame of the platform

T

N

mg

(ignore frictional force into page)

FIGURE 5.33c

+x

mv  /R2

b.)  From a non-inertial frame of reference
(i.e., someone sitting next to you on the platform),
the forces acting on you are shown in Figure 5.33c.
Noting that as far as you are concerned, you aren't
accelerating at all (you don't seem to be moving
along the line of the tether), we can use N.S.L. to
write:
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  ∑ Fx :

T - m(v2/R) = max = 0             (as ax = 0 in this frame)

⇒    v = (TR/m)1/2.

c.)  The velocities determined in both frames are the same.

Note:  The trick is to make the actual ma value, as observed in the inertial
frame (this would be mv2/R in this case), into a fictitious force in the non-inertial
frame, then to look to see if there appears to be an apparent acceleration in the
non-inertial frame.  In the car rounding the corner example, the box appeared to
be accelerating away from you, so in that case, there is an acceleration as viewed
in the non-inertial frame of your car.  In the above example, there doesn't appear
to be acceleration in the non-inertial frame as you move around the circle, so a = 0
in that case.  In both cases, though, you took the real, inertial acceleration (for
these cases, v2/R), multiplied it by m, and treated it as though it were a force.

5.)  One more fictitious force example:  A mass on
a spring is placed in an accelerating rocket (Figure
5.34a) out in space (i.e., no gravity).  The rocket's
acceleration is known to be A.  Assuming you also know
the spring constant, by how much is the spring
elongated from its equilibrium position (the variable y
in the sketch)?  Analyze the situation from both the
inertial frame of someone watching from outside the
rocket, and then from the non-inertial frame of
someone sitting inside the rocket with the spring.

a.)  From an inertial frame of reference (i.e.,
a stationary observer outside the rocket), the
only force accelerating m in this gravity free
situation is ky (Figure 5.34b).  Using N.S.L., we
can write:

  
∑ Fy :

ky  = m(ay)

= m(A)

⇒    y = (mA/k).
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b.)  From a non-inertial frame of reference (i.e.,
inside the rocket), there are two apparent forces
acting: ky pulling up and a fictitious force equal to mA
pulling the spring down (Figure 5.34c).  Noting that m
is not accelerating relative to the rocket, N.S.L. yields:

  
∑ Fy :

ky  - m(A) = 0           (as a = 0 as viewed from

inside the frame)
⇒     y = (mA/k).

c.)  Huzzah!  The y values calculated in both cases are the same.

d.)  Now re-read the first sentence of the Note just above H-5.

I.)  Determining A Time Dependent Velocity v(t) From N.S.L.:

1.)  There is one class of N.S.L. problems in which unembedding
acceleration signs can get you into serious trouble.  As was the case in the
Friction and Free Fall section (Section E), it is the situation in which a body's
velocity as a function of time--v(t)--is being sought.

2.)  Though it may not have been obvious at the time when we did the
frictional free fall problem:

a.)  We identified the frictional force as having a magnitude of kv,
where v was the magnitude of the body's velocity vector (remember, we
had to manually insert a positive or negative sign when writing out the
N.S.L. expression for the situation).

b.)  N.S.L. was used to relate the force quantity kv to the acceleration
dv/dt yielding a differential expression we could solve.

c.)  Though it was, again, probably not obvious, the dv/dt notation
alluded to above had to be defined as the derivative of the velocity
MAGNITUDE.  Otherwise, the v and dv/dt terms would have been the
mathematical equivalent of apples and oranges, one being a vector and
the other a magnitude.

d.)  Because the problem was set up as it was, we got away with
being notationally sloppy without disastrous consequences.  You are
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about to see what those consequences could have been if we hadn't been
so lucky, and how you can avert the problem altogether.

3.)  To understand the difficulty, consider the following:

a.)  A mass moves to the right on a frictionless
surface.  A force is applied to the mass to the right (see
Figure 5.35).  During the body's motion, the
magnitude of the body's velocity increases and the
velocity's magnitude-change is positive.

i.)  Justification?  If the body's velocity
increases from 5 m/s to 7 m/s, the change of the
velocity magnitude will be ∆ v = (7 m/s - 5 m/s) . . . a positive quantity.

ii.)  What about dv/dt?  In this case, dv/dt is inherently positive
(that is, just as ∆ v has a positive sign embedded within itself, so
does dv and, hence, dv/dt).

iii.)  So what does N.S.L. do for us?  Summing the forces in the x
direction yields:

F = m(dv/dt).

iv.)  Kindly notice that this expression makes perfect sense as it
stands.  The force is inherently positive, dv/dt is inherently positive,
the two sides of the equation are equivalent and all is well.

b.)  Now, consider the same mass moving to the left
on the same frictionless surface.  The force is still being
applied to the right (see Figure 5.36).  During the body's
motion, the magnitude of the body's velocity decreases
and the velocity's magnitude-change is negative.

i.)  Justification?  If the body's velocity drops
from 5 m/s to 3 m/s, the change of the velocity
magnitude will be ∆ v = (3 m/s - 5 m/s) . . . a negative quantity.

ii.)  What about dv/dt?  In this case, dv/dt is inherently negative
(that is, just as ∆ v has a negative sign embedded within itself, so
does dv and, hence, dv/dt).
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iii.)  So what does N.S.L. do for us?  As the freebody diagram
hasn't changed (velocities are not included on them), summing the
forces in the x direction yields:

F = m(dv/dt).

iv.)  Oops.  We have a problem.  The force is still inherently
positive, but dv/dt is now inherently negative.  The only way the two
sides of the equation can equal one another is if a negative sign is
inserted in front of the ma term.  This insertion would NOT be the
consequence of the acceleration (as a vector) being negative.  In fact, if
you take the derivative of the velocity vector, you will get a positive
acceleration.  It is the consequence of the fact that the derivative we
are taking is that of the velocity magnitude.  That derivative is
inherently negative.  In short, the N.S.L. expression that will allow us
to derive a reasonable velocity function (i.e., one that sees the velocity
slowing with time) is:

F = - m(dv/dt)

c.)  Summarizing, in both cases the acceleration is to the right, yet
depending upon the direction of motion, the sign in front of the m(dv/dt)
term can either be positive or negative.

5.)  So how do we remedy the difficulty when dealing with N.S.L. problems
in which we are asked to determine a body's velocity as a function of time?

a.)  The easiest way to do this is also the most mathematically
satisfying.  Simply:

i.)  Write out the velocity vector, sign unembedded.

ii.)  Take the time derivative of that velocity function.  That will
give you the appropriate +dv/dt term.

b.)  Example:  Consider the block moving to the left (i.e., in the -i direction).

i.)  The velocity vector in that case can be written as:

v = v (-i)
   = -v (i),

where v is the magnitude of the velocity vector at any arbitrary
point in time and the unit vector i is directed along the line of
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motion (note that the negative sign has been detached from the
unit vector).

ii.)  Taking the time derivative yields:

a = 
    

d
dt
v





    = 
    

d
dt

v−[ ]( )i

    = 
    

−





dv
dt

i.

iii.)  N.S.L. becomes:

F = ma

      = m
  

−





dv
dt

      = - m
  

dv
dt





 .

It works!

c.)  Bottom Line:  Whenever you find yourself in a situation in which
you must use N.S.L. to determine the magnitude of a body's velocity as a
function of time, the acceleration term to be substituted into the right side
of N.S.L. should be determined using the approach outlined in Part 5a.

6.)  Parting Shot:  Going back to the free fall problem discussed in Section
E, the positive direction was defined as up, which means the velocity vector
should have been written as v = v(-j) = - v(j).  The derivative of this yields an
acceleration term of a = - dv/dt, just as we assumed.  The only difference is that
now you know why the negative sign in front of the acceleration term was
appropriate.
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QUESTIONS

5.1)  Draw a free body diagram for the forces acting on each of the bodies
in each of the four independent sketches shown in Figure I.  Label as completely
as you can.  Note that in Part d, you are being asked to draw f.b.d.s on pulleys.
This is for practice in force recognition, not because it is something you will ever
need to do again.  Also, note that in that part, the pin supporting each pulley
provides a force.

mass A with strings
   attached and one
   push-me pull-you
      force F acting on it

FIGURE I

mass
   B

mass
   A

string

0
table

pulley A

hanging
   mass m

mass A

mass B
mass
   CF

a.) b.)

c.) d.)

frictional

frictionless

v

v

frictional

pulley B pulley C

h

5.2)  In each case below, state the "reaction force" that must exist ac-
cording to Newton's Third Law.

a.)  The floor applies a force to you;
b.)  The string applies a force to the weight;
c.)  The car applies a force to the tree;
d.)  The earth applies a force to the moon.

Important Note:  Getting numerical answers for the problems below is
not particularly important.  You have been given numbers to work with because
numbers make students feel secure, but you should initially do each problem
algebraically before sticking the numbers in (that is the way you will find the
Solutions presented).  WHAT IS IMPORTANT is that you can follow the process
needed to approach and solve these problems, not the bottom line.
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BE AWARE:  I could very well give you test problems in which there are
no numbers, only algebraic symbols.

5.3)  A sled whose mass is m = 30 kg slides horizontally with velocity
magnitude v = 2 m/s.  It runs into sticky snow and experiences a constant
frictional force of fk = 12 nts.

a.)  What is the sled's acceleration in the sticky snow?  (Note that
Figure II is for Part b only--there is no force F acting in
Part a).

b.)  Your friend decides to help you by pulling the sled
with a force F = 60 newtons at θ  =  40o with the horizontal
(Figure II).  For this case, what is the acceleration of the
sled?  (Note that the vertical component of F will lighten
the load, so to speak, lessening N and the N-related fric-
tional force--you'll need to determine the coefficient of fric-
tion using the information available in Part a, then go
from there).

c.)  (Note:  This will be a difficult question if you are uncomfortable
with Calculus; if that be the case, go directly to the Solutions for the
approach and execution.)  While in the sticky snow, your friend begins to
experiment with the angle of pull (he has decided that a 40o pull is not
optimal).  At what angle φ  will the minimum force Fmin be required to pull
the sled with constant velocity?

Hint 1:  Further explanation:  At a large angle, the component of F in
the normal direction will diminish the normal force N which, in turn, will
diminish the frictional force µ kN.  Unfortunately, it will also make the
component of F along the line of motion very small--possibly too small to
overcome friction.  On the other hand, making the angle small will provide
more force to counteract friction, but it will do little to diminish the
normal force N and, hence, the frictional force. There is an angle that will
both diminish N while additionally providing a fairly large component of
F in the direction of motion.  At that angle, the force required to pull the
sled at a constant velocity will be a
minimum.  Your thrill is to find that angle.

Hint 2:  If you can determine the force
F as a function of φ , you can determine the
slope of that function (i.e., dF( φ )/dφ  ), then
set it equal to zero (see Figure IIa).  At the
angle at which that is true (i.e., dF( φ )/dφ
= 0), the force will be a minimum.
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5.4)  An elevator whose mass is m = 400 kilograms is supported by a ca-
ble.  A frictional force of f = 80 newtons is applied to the elevator as it moves.
Determine the tension T in the cable when the elevator is:

a.)  Stationary;
b.)  Moving upward while accelerating at 2.8 m/s2;
c.)  Moving upward with a constant velocity-magnitude of 5 m/s;
d.)  Accelerating downward at 2.8 m/s2 with velocity downward;
e.)  Moving downward with a constant velocity-magnitude of 5 m/s.

5.5)  You are standing on a bathroom scale in an elevator (yes, this is an
odd place to find a bathroom scale).  Your mass is m = 60 kilograms; the scale
reads W = 860 newtons.  What is the acceleration of the elevator?

5.6)  You are sitting in a commercial
jetliner.  It is on the runway and ready to take off.
Before it does, clever soul that you are, you hang a
.5 meter long string from the ceiling just overhead
and attach to its free end a weight whose mass is
m = .05 kg.  The jet begins its acceleration.  As it
does, the string and mass swing toward you until
the string comes into equilibrium at a constant
angle of θ  = 26o with the vertical (see Figure III).

a.)  What is the jet's acceleration?
b.)  Once the jet gains altitude and proceeds with a constant velocity,

what will the string and mass be doing (that is, will the 26o angle have
changed)?  Explain.

5.7)  IMPORTANT PROBLEM:  Two blocks of
mass m1 = 2 kgs and m2 = 7 kgs are wedged up against
one another and against a wall by a horizontal force F
(see Figure IV to the right).  Doing each section alge-
braically before putting in the numbers:

a.)  What is the coefficient of static friction
between m1 and m2 (call this µ s,1) and between
m2 and the wall (call this µ s,2) if the MINIMUM
FORCE Fmin  required to keep the blocks from
breaking loose and sliding under the influence of gravity if Fmin = 25

newtons?
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b.)  The force F is decreased to 20 newtons.  The blocks break loose and
begin to fall.  If the coefficients of kinetic friction between m1 and m2 AND
between m2 and the wall are µ k,1 = .15 and µ k,2 = .9 respectively, what are
the accelerations of m1 and m2?  Note that they will NOT be the same.

c.)  Why are the accelerations different?

5.8)  IMPORTANT PROBLEM:  Known
masses m1 > m2 are attached by a string while
sitting on an incline of known angle θ  (see Figure
V).  If the coefficient of friction is a known µ k and if
the two are initially sliding UP the incline (no, you
don't know how they managed it--somebody
obviously gave them a push somewhere along the
line--what matters is that they are moving UP the
incline when you see them):

a.)  Draw an f.b.d. for the forces acting on m1 and m2.
b.)  Derive an expression for the acceleration of the system (that is,

the acceleration of either m1 or m2--both will be the same) as shown.
c.)  Derive an expression for the tension in the string as shown.

5.9)  IMPORTANT PROBLEM:  A
crate whose mass is m1 is placed on an in-
cline whose angle is θ .  The coefficient of
friction between the crate and the incline is a
known µ k.  A wire attached to the mass
proceeds over a frictionless, massless pulley
and is attached to a hanging mass m2.  At
the instant pictured in Figure VI, m1 is
moving down the incline.  Additionally, at the
instant shown the wire is at an angle φ  with
the line-of-the-incline.  For the moment shown
in the figure, derive general algebraic
expressions from which you could determine the crate's acceleration.  DO NOT
SOLVE THESE EQUATIONS, just generate them!

Hint:  This is not as hard as it looks.  Do not look ahead!  Content your-
self with following the steps you have been given in an orderly fashion.  This
problem will fall out nicely if you do it in pieces.  (See additional note below!)
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NOTE:  This problem is designed to
make you think about NSL, but it has one
unfortunate characteristic that is not typical
of all NSL problems.  The acceleration of m2
is in the same direction and has the same
magnitude as the acceleration of the string
attached to it (this is called astring in the
sketch).  Unfortunately, the string is attached

to m1 at an angle, so m1's acceleration and the string's acceleration aren't the
same.  If we call m1's acceleration a1 and m2's acceleration a2, the relationship
between the two parameter's is a1 = a2 cos φ .  I'm pointing this out because it is
very much a side issue.  I don't want you spending a lot of time stewing over it.

5.10)  A mass m1 sitting on a frictionless table
is attached to a string.  The free end of the string is
threaded through a hole in the table.  Once through,
it is attached to a hanging mass m2 (see Figure
VII).  If m1 is then given a shove that moves it into
circular motion, what must its velocity be if its
radius is to be R?

5.11)  The Loop is a favorite Magic Mountain roller coaster ride that has
within it a complete, vertical, 360o loop.  The carts that travel through the loop
are attached to the track; let's assume one comes loose.  What is the minimum
velocity magnitude required for such a cart to make it through the top of the
loop without coming off the track?

Note:  At minimum velocity, the cart will just barely free fall through the top
of the arc.  In that case, the normal force applied to the cart by the track will be zero.

5.12)  A particular brand of string can withstand a force of T = 50 newtons
of tension before breaking.  A rock of mass m = .2 kg is attached to a string of
length L = 1.2 meters.  A kid then takes the string and mass and whirls them
around her head (see Figure VIII on the next page).

a.)  Assuming the radius of motion is, to a good approximation, equal
to the string's length (that is, assume the mass is moving very fast and
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the hang-down angle is zero), what is
the maximum speed at which the rock
can rotate before the string breaks?

b.)  Taking the hang-down into
consideration (i.e., assume the
string's length is no longer equal to
the radius of the rock's motion), what
is the angle at which the string
breaks?

c.)   Use the angle determined in
Part b to determine the velocity of the mass in that situation.

d.)  The rock is observed to be hanging at a 30o angle.  How fast is it
moving?

5.13)  Until now, we have dealt only with gravitational forces between the
earth and small objects close to the earth's surface.  Under this circumstance,
we have taken the acceleration of gravity to be nearly constant and equal to g =
9.8 m/s2.  Newton realized that gravity must exist between any two objects no
matter how far apart they were.  To accommodate the most general situation,
he derived a general gravitational force expression the magnitude of which is:

Fg = G m1m2/r2.

In this equation, G is called the Universal Gravitational Constant and is equal
to 6.67x10-11 m3/kg.s2; m1 and m2 are the masses generating the force field,
and r is the distance between the center of mass of the two objects.

a.)  The earth has a mass me = 5.98x1024 kg and a radius re =

6.37x106 meters.  Assuming your mass is 70 kg and you are standing on
the earth's surface, what is the force of attraction between you and the
earth according to Newton's general expression?

After finishing this calculation, determine the gravitational force
between you and the earth, given the assumption that your weight equals
mg.  How do the two numbers compare?

b.)  The acceleration of gravity on the earth's surface at the poles is
9.83 m/s2.  What is the acceleration of gravity at the equator?  (Think
centripetal acceleration.)

c.)  The moon has a mass mm = 7.35x1022 kg and an orbital distance

from the earth's center of 3.84x108 meters.  What must its orbital speed
be?
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